<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 1 Addition & Subtraction Patterns | 2.OA.1* 2.OA.2* 2.NBT.2* 2.MD.5 3.OA.9* 3.NBT.2* | • Data is collected/presented in different ways.
• Computational fluency requires efficient, accurate, and flexible methods for computing.
• Knowing properties of operations and number patterns allows us to be flexible when working with numbers.
• Operations can be modeled with a visual representation.
• Models can be used to show quantities and composition and decomposition of numbers.
• Effective problem solvers select appropriate methods, employing a variety of strategies, and explore alternative approaches to solve problems.
• Strong visual images of addition and subtraction lead to development of flexible, efficient, and accurate strategies for solving addition and subtraction problems.
• Addition and subtraction are inverse operations. | • What are flexible, effective, and efficient methods of computation?
• How can patterns be generalized?
• What does the unknown represent in an equation?
• How are addition and subtraction the same or different/related?
• What strategies can we use to make solving addition and subtraction problems easier?
• What are the different ways that addition and subtraction can be represented using visual images and symbols?
• How can using the properties of addition make problem solving easier? | Unit 1 Screener
Checkpoints:
• M2S3: Addition & Subtraction Checkpoint
Work Samples:
• M3S3: Adding Lengths Work Sample
Unit 1 Assessment (M4S6)
• Administered through Schoology Performance Matters | 9/29/22 |

* indicates standards that are assessed through the Unit Post-Assessment.
Mathematics Grade 3
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 2 Introduction to Multiplication | 3.OA.1*
3.OA.2
3.OA.3*
3.OA.4*
3.OA.5*
3.OA.7*
3.OA.9*
3.MD.7b
3.MD.7c | - Computational fluency requires efficient, accurate, and flexible methods for computing.
- Knowing properties of operations and number patterns allows us to be flexible when working with numbers.
- Operations can be modeled with a visual representation.
- Effective problem solvers select appropriate methods, employing a variety of strategies, and explore alternative approaches to solve problems.
- Strong visual images of multiplication and division lead to development of flexible, efficient, and accurate strategies for solving multiplication and division problems.
- Multiplication involves counting groups of like size and determining how many are in all. | - What are the meanings of multiplication and division?
- What are the different ways that multiplication and division can be represented using visual images and symbols?
- How can using the properties of multiplication make problem solving easier?
- How are different representations of multiplication and division related to each other?
- How can using the relationship between multiplication and division make solving division problems easier? | Unit 2 Screener
Checkpoints:
- M2S1: Multiplication Checkpoint
Work Samples:
- M3S1: Pet Store Story Problems Work Sample
Unit 2 Assessment (M4S4)
- Administered through Schoology Performance Matters | 11/7/22 |

* indicates standards that are assessed through the Unit Post-Assessment.
Mathematics Grade 3
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 3** Multi-Digit Addition & Subtraction | 3.NBT.1* 3.NBT.2* 3.OA.8* | • There are a variety of strategies for adding and subtracting 2- and 3- digit numbers with accuracy, efficiency, and flexibility.
• Computational fluency requires efficient, accurate, and flexible methods for computing.
• Knowing properties of operations and number patterns allows us to be flexible when working with numbers.
• Operations can be modeled with a visual representation.
• Model can be used to show quantities and composition and decomposition of numbers.
• Effective problem solvers select appropriate methods, employing a a variety of strategies, and explore alternative approaches to solve problems.
• Strong visual images of addition and subtraction lead to development of flexible, efficient, and accurate strategies for solving addition and subtraction problems.
• Numbers can be rounded to different place values based on the situation. Rounding | • What are flexible, effective, and efficient methods of computation?
• What does the unknown represent in an equation?
• How are addition and subtraction the same or different/related?
• What strategies can we use to make solving addition and subtraction problems easier?
• What are the different ways that addition and subtraction can be represented using visual images and symbols?
• How can using the properties of addition make problem solving easier?
• When is it appropriate to round and for what purpose?
• How does place value connect with regrouping in addition and subtraction?
• How is zero different from any other whole number you might add or subtract? | **Unit 3 Screener**
Checkpoints:
• M2S1: Rounding & Multi-Digit Addition Checkpoint
• M3S1: Three-Digit Addition & Subtraction Checkpoint
Work Samples:
• M2S4: Books & Books & Books Work Sample
Unit 3 Assessment (M4S5)
• Administered through Schoology Performance Matters | 12/12/22 |

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
• Skip counting can be used to read an analog clock to tell time to the nearest minute.
• Solving real-world problems involving measuring intervals of time requires analyzing the known values such as starting time, ending time, and the amount of time passed.
• Standard measurement units provide common language for communicating length, time, mass, volume, etc.
• The choice of measurement tools depends on the degree of precision desired.
• Measurement data can be represented by constructing line plots. | • How are tools for telling time and measuring time intervals used?
• How do units within a measurement system relate to each other?
• What is a fraction?
• How are fractions related to whole numbers?
• Why is the unit fraction an essential concept in understanding fractions in general?
• How can I represent fractions in multiple ways? | Unit 4 Screener
Checkpoints:
• M2S1: Time Checkpoint
• M3S1: Measurement Checkpoint
Unit 4 Assessment (M4S4)
• Administered through Schoology Performance Matters | 1/30/23 |

* indicates standards that are assessed through the Unit Post-Assessment.
**Mathematics Grade 3
Year-at-a-Glance**

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 5:** Multiplication, Division & Area | 3.OA.1* 3.OA.2* 3.OA.3* 3.OA.4* 3.OA.6* 3.OA.7* 3.OA.8* 3.MD.5a* 3.MD.5b* 3.MD.6* 3.MD.7a* 3.MD.7b* | • Division can represent either sharing or grouping situations.
• Division and multiplication are related as inverse operations.
• Area can be determined by counting unit squares needed to cover a rectangle and by multiplying the side lengths.
• Computational fluency requires efficient, accurate, and flexible methods for computing.
• Effective problem solvers select appropriate methods, employing a variety of strategies, and | • What are the meanings of multiplication and division?
• What are the different ways that multiplication and division can be represented using visual images and symbols?
• How can using the properties of operations be used to solve multiplication and division problems?
• How are different representations of | Unit 5 Screener
Checkpoints:
• M2S4: Multiplication & Division Checkpoint
• M4S1: Division Checkpoint
Unit 5 Assessment (M4S6)
• Administered through Schoology Performance Matters | 3/1/23 |

* indicates standards that are assessed through the Unit Post-Assessment.
Mathematics Grade 3
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>explore alternative approaches to solve problems.</td>
<td>multiplication and division related to each other?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visual images of division and multiplication lead to understanding how the operations are related and to developing problem-solving strategies.</td>
<td>• How can using the relationship between multiplication and division make solving division problems easier?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recognizing and continuing patterns can facilitate solving real world problems and computations.</td>
<td>• How does finding patterns help in counting and/or computations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 6: Geometry</td>
<td>3.MD.7b*</td>
<td>• The length around a polygon (perimeter) can be calculated by adding the lengths of its sides.</td>
<td>• How might finding perimeter help to accomplish tasks in daily life?</td>
<td>Unit 6 Screener</td>
<td>4/13/23</td>
</tr>
<tr>
<td></td>
<td>3.MD.7d*</td>
<td>• Perimeter and area are related.</td>
<td>• How is geometry used to solve problems in everyday life?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.MD.8*</td>
<td>• Shapes can be classified by their attributes.</td>
<td>• How can using visual models support reasoning about geometric concepts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.G.1*</td>
<td>• Fractional parts are relative to the size of the whole.</td>
<td>• How can attributes be used to classify shapes?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 7:</td>
<td>3.OA.1</td>
<td>• Computational fluency requires efficient, accurate, and flexible</td>
<td>• What are flexible, effective, and efficient methods of</td>
<td>Unit 7 Screener</td>
<td>5/15/23</td>
</tr>
<tr>
<td>Extending</td>
<td>3.OA.2</td>
<td>methods for computing.</td>
<td>methods of computation?</td>
<td>Checkpoints:</td>
<td></td>
</tr>
<tr>
<td>Multiplication &</td>
<td>3.OA.3</td>
<td>• Knowing properties of operations and number patterns allows us to be</td>
<td>• How are fractions related to whole numbers?</td>
<td>• M2S2: Multiplication & Division</td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td>3.OA.5*</td>
<td>flexible when working with numbers.</td>
<td>• Why is the unit fraction an essential concept in understanding fractions in</td>
<td>Division Checkpoint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.OA.7*</td>
<td>• Models can be used to show quantities and composition and</td>
<td>general?</td>
<td>• M4S2: Fractions Checkpoint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.OA.8*</td>
<td>decomposition of numbers.</td>
<td>• How can I represent fractions in multiple ways?</td>
<td>Unit 7 Assessment (M4S5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NBT.3*</td>
<td>• Students fluently multiply and divide within 100, using strategies such</td>
<td>• How can using the properties of multiplication make problem solving easier?</td>
<td>• Administered through Schoology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.1*</td>
<td>as the relationship between multiplication and division (e.g., knowing</td>
<td></td>
<td>Performance Matters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.2*</td>
<td>that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.2b*</td>
<td>the end of Grade 3, know from memory all products of two one-digit numbers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.3a*</td>
<td>• Students use the properties of multiplication: Commutative,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.3b*</td>
<td>Distributive, and Associative Properties of Multiplication.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.NF.3c*</td>
<td>• Students find area using multiplication and addition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Students multiply one-digit whole numbers by multiples of ten in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>range 10–90 (e.g., 9 × 10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 8: Bridge Design & Data Collection & Analysis | 3.NF.1, 3.MD.1, 3.MD.2, 3.MD.3, 3.MD.4, 3.MD.6, 3.MD.7b, 3.MD.8, 3.G.1, 3.G.2 | • Effective problem solvers select appropriate methods, employing a variety of strategies, and explore alternative approaches to solve problems.
• Fractional parts are relative to the size of the whole. | • What are flexible, effective, and efficient methods of computation?
• How are fractions related to whole numbers?
• Why is the unit fraction an essential concept in understanding fractions in general? | Unit 8 Screener
Checkpoints:
• M2S1: Rounding & Multi-Digit Addition Checkpoint
• M3S1: Three-Digit Addition & Subtraction Checkpoint | 6/13/23 |

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Measurement data can be represented by constructing line plots. • Rulers and measuring lengths can be connected to fractions. • Shapes can be classified by their attributes. • Fractional parts are relative to the size of the whole. • Data is collected/presented in different ways. • Skip counting can be used to read an analog clock to tell time to the nearest minute. • Solving real-world problems involving measuring intervals of time requires analyzing the known values such as starting time, ending time, and the amount of time passed. • Standard measurement units provide common language for communicating length, time, mass, volume, etc. • The choice of measurement tools depends on the degree of precision desired.</td>
<td>• How can I represent fractions in multiple ways? • How is geometry used to solve problems in everyday life? • How can using visual models support reasoning about geometric concepts? • How can attributes be used to classify shapes? • How are tools for telling time and measuring time intervals used? • How do units within a measurement system relate to each other?</td>
<td>• M2S4: Books & Books & Books Work Sample</td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.