Elementary Science Units for Kindergarten Through Grade 5

<table>
<thead>
<tr>
<th>Qtr</th>
<th>Kindergarten</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Checkerspot Challenge (#KCheckerspot)</td>
<td>X Marks the Spot (#IXMarks)</td>
<td>Building Blocks (#2BuildingBlocks)</td>
<td>Mayfly Mayhem (#2Mayfly)</td>
<td>Geologic Journeys (#4Geologic)</td>
</tr>
<tr>
<td></td>
<td>Students work with the Baltimore Checkerspot Recovery Team to find a place to plant the White Turtlehead and keep it safe by building a deer proof structure.</td>
<td>Students work with the Maryland Historical Society to find Captain Kid’s treasure by using the apparent motion of the moon and stars.</td>
<td>Students work for WRA as civil engineers. They are challenged with designing a new wall and mortar for Charles Village. Their structure is tested by trying to knock it down with a wrecking ball.</td>
<td>Students learn about Murray and his other aquatic friends. They design and construct a device to keep sediment from washing into the stream.</td>
<td>Students learn about Earth Systems by following the journey of Yahia Shakir through sites in Egypt. On his travels he observes different Earth changes and students help him to investigate the causes. Then students work to develop solutions to mitigate flooding in the Nile River.</td>
</tr>
<tr>
<td>2</td>
<td>Weather Wonders (#KWeather)</td>
<td>Creeper and Creature Features (#IBlomimicry)</td>
<td>Sandy Situation (#2SandySit)</td>
<td>Driving Forces (#2DrivingForces)</td>
<td>Socckett Solution (#4RubbishRescue)</td>
</tr>
<tr>
<td></td>
<td>Students build a structure to protect everyone from the sun while on the playground. In part 2, they act as meteorologists with the National Weather Service in order to predict severe weather so the principal knows when to take down the structure.</td>
<td>Students work for Under Armour® to design a new piece of outerwear that is inspired by how plants and animals protect themselves.</td>
<td>Students work for KC1 as environmental engineers to construct a way to reduce the amount of erosion occurring at Miami Beach.</td>
<td>Students design and build a car to keep an egg safe by understanding the physical forces working on it. In part 2, students will explain the electromagnetic release system attached to the ramp.</td>
<td>Students learn about energy and waves by focusing on the work of Jessica O. Matthews, one of the inventors of the Soccket®. Students learn about energy harnessing, conversion, and transfer in order to design a prototype device that will generate electricity through everyday activities.</td>
</tr>
<tr>
<td></td>
<td>Students learn about pushes and pulls in order to build a windmill which pulls up a bucket of water. (Follows the story The Boy Who Harnessed the Wind)</td>
<td>Students design an alarm system that warns everyone (blind and deaf) of danger.</td>
<td>Students learn about Murray and his other aquatic friends. They design and build a car to keep an egg safe by understanding the physical forces working on it. In part 2, students will explain the electromagnetic release system attached to the ramp.</td>
<td>Students learn to predict severe weather events around the world. At the end, students work closer to home as architectural engineers to design a structure which will withstand the weight of a heavy snow and/or hurricane force winds.</td>
<td>Students learn about how local plants and animals develop traits based on changes in environmental conditions. The students identify one species to promote as the school’s focus for their grade 5 schoolyard sustainability project.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turtle Trouble (#4TurtleTrouble)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students work as marine biologists with the Baltimore Aquarium to diagnose and treat a variety of ailments including Loggerhead Sea Turtles, Bottle Nose Dolphins, Harbor Seals, and Pelicans.</td>
</tr>
</tbody>
</table>

* Order of implementation may vary by school. © Starlab Experience © Meaningful Watershed Educational Experience (MWEES) © STEM Fair Event

Rev. 9/2022

Schoolyard Sustainability Part 1 (#5Schoolyard) Students identify as many living things as they can in order to develop a local food web model. This data is later used to develop a primary research question around the issue “Can people effectively manage Baltimore County’s ecosystems?” This unit will satisfy the environmental literacy requirement.

Blast Off (#5BlastOff) Students work as NASA chemists on Wallops Island to design rocket fuel and a sub-orbital launch vehicle to test it.

Where’s the Water? (#5Where’sWater) Students work as hydrologist and civil engineers to solve Kent Island’s freshwater problem. Along the way, they learn about the limited supply and distribution of water on Earth.

Becoming Banneker (#5Banneker) Students learn about Benjamin Banneker and his work surveying in the 18th century. At the end of the unit, students use their knowledge of the stars and sun to build a sundial.

Maryland Integrated Science Assessment (MISA)

Schoolyard Sustainability Part 2 (#5Schoolyard) The fifth grade year ends with students taking action on the proposals they created in quarter one. This mini unit meets the Maryland Environmental Literacy Standards.
“The world doesn’t care what you know. What the world cares about is what you do with what you know.”

Tony Wagner, Author
Creating Innovators

In 2012, Maryland became the fourth state in the nation to adopt the Next Generation Science Standards. These standards represent a fundamental shift in how science curriculum is designed and taught. More than ever before, science standards are based on a sequential progression starting at the earliest ages. The standards or performance expectations are organized into a series of topics. These topic pages form the basis for curricular units in Baltimore County.

Each unit focuses students on solving a real-world, locally relevant problem. Early in each unit, students are given the opportunity to develop a solution to the problem. This is followed by a pre-assessment of their content knowledge. This information combines to form a starting point for teachers to meet students’ instructional needs. Each lesson helps students to refine their initial solution to the problem. At the end of the unit, students are given the opportunity to fully revise their solution. This process models the work of scientists and engineers and encourages students to iterate their work by constantly looking for ways to improve.

Another central component to the curriculum is the development of argumentation. Students are exposed to a variety of scientific phenomena during the course of instruction. To make sense of this, students will be asked to make an initial claim about the phenomena. This may draw on their background knowledge and assist the teacher in understanding any misconceptions that students harbor. Through experimentation, observation, and analysis, students will develop the evidence necessary to revise their claims. This revision, based on evidence, is supported by reasoning. To assist teachers in using this claims, evidence, and reasoning (CER) framework, teachers will utilize a special anchor chart, outlined below:

- **K** - What do you Know (or think you know)?
- **L** - What have you Learned?
- **E** - What Evidence do you have to support that you learned something?
- **W** - What do you Wonder?
- **S** - What new ideas about Science do we now understand?

In 2012, Maryland became the fourth state in the nation to adopt the Next Generation Science Standards. These standards represent a fundamental shift in how science curriculum is designed and taught. More than ever before, science standards are based on a sequential progression starting at the earliest ages. The standards or performance expectations are organized into a series of topics. These topic pages form the basis for curricular units in Baltimore County.

Each unit focuses students on solving a real-world, locally relevant problem. Early in each unit, students are given the opportunity to develop a solution to the problem. This is followed by a pre-assessment of their content knowledge. This information combines to form a starting point for teachers to meet students’ instructional needs. Each lesson helps students to refine their initial solution to the problem. At the end of the unit, students are given the opportunity to fully revise their solution. This process models the work of scientists and engineers and encourages students to iterate their work by constantly looking for ways to improve.

Another central component to the curriculum is the development of argumentation. Students are exposed to a variety of scientific phenomena during the course of instruction. To make sense of this, students will be asked to make an initial claim about the phenomena. This may draw on their background knowledge and assist the teacher in understanding any misconceptions that students harbor. Through experimentation, observation, and analysis, students will develop the evidence necessary to revise their claims. This revision, based on evidence, is supported by reasoning. To assist teachers in using this claims, evidence, and reasoning (CER) framework, teachers will utilize a special anchor chart, outlined below:

- **K** - What do you Know (or think you know)?
- **L** - What have you Learned?
- **E** - What Evidence do you have to support that you learned something?
- **W** - What do you Wonder?
- **S** - What new ideas about Science do we now understand?