Mathematics Kindergarten
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 1: Numbers to Five & Ten** | K.CC.1*
K.CC.3
K.CC.4*
K.CC.5
K.CC.6*
K.CC.7
K.MD.2
K.MD.3
K.OA.3*
K.G.1
K.G.2
K.G.4
K.G.6 | - Numbers represent sets of items.
- Numbers can be composed and decomposed using different quantities.
- Numbers can be subitized rather than counted individually.
- Models can be used to show quantities and the composition and decomposition of numbers.
- Number Word Sequence mastery is the ability to say number words in the correct sequence when counting from 1 to 20.
- The last number said when counting a group of objects indicates the total number in the collection (cardinality).
- When counting to find the total number of objects in a set, each object must be counted once and only once.
- Each object in a set corresponds with one number in the counting sequence (one-to-one correspondence).
- Objects can be sorted, classified and compared based upon different attributes.
- Patterns can be represented through motion, sound and concrete materials. | - What are efficient ways to count?
- What does the unknown represent in an equation?
- How are numbers represented?
- How can objects be classified and sorted.
- What is a repeating pattern? | **M2, S5 Elements of Early Number Sense Checkpoint**
M3, S5 Beat You to Five Checkpoint | 10/4/22 |

* indicates standards that are assessed through the Unit Checkpoints.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 2: Numbers to Ten</td>
<td>K.CC.1 K.CC.3* K.CC.4* K.CC.5* K.CC.6* K.MD.3 K.OA.1 K.OA.2 K.OA.3 K.OA.4 K.G.1 K.G.2 K.G.4 K.G.6</td>
<td>• The last number said when counting a group of objects indicates the total number in the collection. (cardinality) • Numbers can be subitized rather than counted individually. • Each object in a set corresponds with one number in the counting sequence. (one-to-one correspondence) • Quantities can be combined (composed) or separated (decomposed). • A single quantity can be decomposed into smaller component quantities. • Counting can be used to find out which is more, and which is less. • Quantities can be represented using written numerals. • The number of objects within a set remains the same even when rearranged. (Conservation of number) • Simple shapes can be used to compose larger shapes. • Informal language can be used to describe the parts and attributes of shapes.</td>
<td>• What are numbers? • What are efficient ways to count? • How are numbers represented? • How can comparing numbers be used to determine which group has more or less? • How can quantities be put together and taken apart? • How can simple shapes be used to make larger shapes? • How can you describe shapes?</td>
<td>M1, S5 Count & Compare Checkpoint M3, S4 Numbers & Number Racks Checkpoint</td>
<td>11/10/22</td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Checkpoints.
Mathematics Kindergarten
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
• Quantities and combinations can be represented using models. (Number rack, five-frames, ten-frames, finger patterns)
• An equation indicates equality between two quantities.
• Numbers and symbols can be used to represent a mathematical situation.
• The equal sign means “is the same as” or “has the same value as”.
• The equal sign describes the relationship between two quantities that have the same value.
• Quantities and numbers can be compared to determine more and less.
• Numbers can be ordered from least to greatest.
• Any even number is another number doubled and an odd number is an even number minus one.
• Ordinal numbers identify the position of objects. | • What are efficient ways to count?
• How are numbers represented?
• What is the meaning of the equal sign?
• How can comparing numbers be used to determine which group has more or less?
• What are efficient strategies to solve story problems? | **M1, S4 Beat You to Ten Checkpoints**
M3, S5 Working with Numbers Checkpoint | 12/15/22 |

* indicates standards that are assessed through the Unit Checkpoints.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 4: Paths to Adding, Subtracting & Measuring | K.CC.1*
K.CC.2*
K.CC.3*
K.CC.4
K.CC.5*
K.CC.6
K.CC.7
K.MD.1
K.MD.2
K.MD.3
K.OA.1
K.OA.2*
K.OA.5 | • A number line can be used to model the number sequence and the relationship among numbers.
• A number line can be used to count the number of equal intervals between two points. (Interval counting)
• Quantities, lengths, numbers, and coins can be compared to determine more or less.
• Positional language (before, after, between, in front of) and comparison language (greater than, less than, longer, shorter, more, less) can be used to describe the relationships among nonequal quantities, lengths, numbers, and coins.
• Different units of measure yield different results. | • How can measurable attributes be used to compare objects?
• How can you determine whether one object is longer or shorter than another?
• How can positional and comparison words be used to describe relationships?
• What are efficient ways to solve addition and subtraction problems? | M1, S4 Numeral Order Checkpoint
M2, S3 Foxes & Dens Checkpoint
M3, S3 Counting & Writing Numbers Checkpoint
M4, S4 Money March Partner Game Checkpoint | 1/27/23 |

* indicates standards that are assessed through the Unit Checkpoints.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
- Two-dimensional shapes can be modeled and explored using shape cards, pattern blocks, and geoboards.
- Two-dimensional shapes can be sorted and classified based on specific attributes like number of sides or number of corners.
- Sorting is the first step in finding patterns and identifying trends.
- A data display can be used to categorize sets of shapes and make comparisons of those sets by writing inequality statements. (,<,>,=) | - What is a two-dimensional shape?
- What is the difference between a two- and three-dimensional shape?
- How can shapes be identified and described?
- How can shapes be compared, created, and analyzed based upon their attributes?
- How can shapes be classified and sorted? | M1, S4 Sort & Count Checkpoint
M3, S4 Two-Dimensional Shapes & Their Attributes Checkpoint | 3/1/23 |

* indicates standards that are assessed through the Unit Checkpoints.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
- Two- and three-dimensional shapes can be sorted and classified based on specific attributes.
- Informal language can be used to describe the parts and attributes and the similarities and differences between two- and three-dimensional shapes.
- Each teen number (11 – 19) is composed of a group of 10 and some more 1s.
- Each multiple of ten is a certain number of tens (e.g., 20=2 tens, 80=8 tens)
- A student who is fluent can solve a problem with accuracy, efficiency, and flexibility.
- Equations can be written to represent number combinations.
- Mathematicians use drawings and writing to record their ideas. | - What is a three-dimensional shape?
- What is the difference between a two- and three-dimensional shape?
- How can shapes be identified and described?
- How can shapes be compared, created, and analyzed based upon attributes?
- How can knowledge of place value concepts help to compose and decompose teen numbers?
- What are efficient strategies to solve addition and subtraction problems?
- In what ways can you show your mathematical thinking? | M1, S4 Cylinders Ten & Ones Checkpoint
M2, S4 Three-Dimensional Shapes & Their Attributes Checkpoint
M3, S5 Tens & Ones Checkpoint | 3/31/23 |

* indicates standards that are assessed through the Unit Checkpoints.
Mathematics Kindergarten
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 7: Weight & Place Value | K.CC.1, K.CC.3, K.CC.5, K.CC.6, K.CC.7, K.NBT.1, K.MD.1, K.MD.2, K.MD.3, K.OA.1*, K.OA.2*, K.OA.3, K.OA.4, K.OA.5* | • Objects can be described in terms of measurable attributes, including weight and capacity.
 • Measurements can be used to make comparisons among two or more objects.
 • Numbers are composed of groups of 10s and 1s.
 • Models and equations can be used to compose and decompose numbers.
 • An understanding of number combinations and operations can be built through the use of context, materials and models.
 • Equations can be used to represent number combinations. | • How can measurable attributes be used to compare objects?
 • How can knowledge of place value concepts help to compose and decompose teen numbers?
 • What are efficient strategies to solve addition and subtraction story problems?
 • In what ways can you show your mathematical thinking? | M1, S4 Combinations to Five & Equations Checkpoint
M3, S4 Story Problem Checkpoint | 5/12/23 |

* indicates standards that are assessed through the Unit Checkpoints.
Mathematics Kindergarten Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 8: Computing & Measuring Frogs & Bugs** | K.CC.1
K.CC.2
K.CC.3*
K.CC.4
K.CC.5
K.CC.6*
K.NBT.1*
K.MD.1
K.MD.2
K.MD.3
K.OA.1*
K.OA.2*
K.OA.3
K.OA.4
K.OA.5 | - Subtraction situations can be represented in two different ways: as an act of taking some away from a total, and as an act of comparing or determining the difference between two quantities.
- Strategies for solving subtraction problems include counting backward, anchoring on 5 and 10, and using the relationship between addition and subtraction.
- Equations can be used to represent addition and subtraction situations.
- Mathematical fluency includes the ability to quickly recall or calculate the correct sum or difference, using flexible strategies.
- The equal sign signifies the relationship between numbers.
- Numbers greater than 10 can be composed and decomposed into 10s and 1s. | - What are efficient strategies to solve addition and subtraction story problems?
- How can subtraction situations be represented?
- How can knowledge of place value concepts help to compose and decompose teen numbers?
- How can comparing numbers be used to determine which group has more or less?
- In what ways can you show your mathematical thinking? | **M1, S5 Bug Catchers Checkpoint**
M3, S4 Count & Compare Bugs Checkpoint | **6/13/23** |

* indicates standards that are assessed through the Unit Checkpoints.