<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 1: Figure the Facts | K.MD.3 1.OA.1 1.OA.4* 1.OA.6* 1.NBT.3* 1.MD.2 2.OA.1* 2.OA.2* 2.OA.3* 2.OA.4 2.NBT.2 2.NBT.5 2.MD.1 2.MD.6 2.MD.8 2.MD.10 2.G.1 2.G.2 2.G.3 | • Operations take on meanings in real-world contexts.
 • Addition and subtraction complement each other.
 • Understanding the operations of addition and subtraction will develop confidence and fluency with number facts as they appear in real-world contexts.
 • Models, flexible strategies, and intuition lead to the success of fact retrieval.
 • Numbers are composed of parts and missing parts, such as part-part-whole.
 • Numbers are made up of two or more distinct parts.
 • Models and representations help to make connections between strategies to number relationships.
 • Basic facts are an expression of a mathematical relationship.
 • Operational sense depends heavily on solid number foundations. | • What are efficient strategies to represent and solve word problems involving addition and subtraction?
 • What real-world contexts depict the meaning of addition?
 • What real-world contexts depict the meaning of subtraction?
 • What are flexible, effective, and efficient methods of computation?
 • What are efficient ways to count?
 • How does the base ten number system work?
 • How are addition and subtraction the same or different/related? | Unit 1 Screeners (M1S5)
 Checkpoints:
 • Number Combinations to Ten (M2S5)
 Unit 1 Assessment (M4S5)
 • Administer through Schoology Performance Matters | September 30, 2022 |

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 2: Place Value & Measurement with Jack’s Beanstalks</td>
<td>2.OA.1 2.OA.2 2.OA.3 2.OA.4 2.NBT.1* 2.NBT.1a 2.NBT.2 2.NBT.3* 2.NBT.4 2.NBT.5* 2.NBT.6 2.NBT.7 2.NBT.8 2.MD.4* 2.MD.5 2.MD.6* 2.MD.7</td>
<td>• Numbers are built (composed) with component parts based on place value. • Numbers can be decomposed into their component parts based on place value. • Groups of hundreds, tens, and ones can be used as intervals of measurement. • A variety of models can represent how to solve double-digit addition problems using tens and ones. • Our number system is base ten. • Objects can be measured in a variety of ways, using various tools and/or units. • Base ten concepts are used to count, total, and compare the lengths of objects. • Mathematical models can be used as representational and computational tools.</td>
<td>• How can three-digit numbers be expressed in different ways using place value? • What does it mean to measure the length of objects? • How can you measure the length of objects? • What models can be used to solve double-digit problems? • What strategies can we use to make solving addition problems easier? • What is a base ten number system? • How are measurement concepts connected to the base ten system?</td>
<td>Unit 2 Screeners (M1S2) Checkpoints: • Place Value (M2S1) • Measuring (M2S4) Unit 2 Assessment (M3S7) • Administered through Schoology Performance Matters Work Samples: • Twos Chart Observations (M4S2) • Patterns & Problems with Twos (M4S3)</td>
<td>November 7, 2022</td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.

Baltimore County Public Schools
Office of Mathematics PreK-12
July 2022
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 3:** Addition & Subtraction Within One Hundred | 2.OA.1*
2.OA.2
2.OA.3
2.NBT.1
2.NBT.2*
2.NBT.3
2.NBT.4
2.NBT.5*
2.NBT.6*
2.NBT.9
2.MD.1
2.MD.3
2.MD.4
2.MD.5*
2.MD.6*
2.MD.8
2.MD.10 | - Counting and calculating are connected mathematical concepts.
- Place value understanding is built upon number patterns and sequences.
- The placement of a digit in a number determines the value that the digit represents.
- Skip-counting and decomposing (splitting) strategies depend on place value understanding.
- Addition and subtraction are actions on numbers.
- A variety of models can represent how to solve double-digit addition problems using place value understanding. | - How are counting and calculating related?
- How can number patterns and sequences help to develop place value understanding?
- What does it mean to add or subtract numbers?
- How can addition or subtraction be shown as actions on quantities?
- What models can be used to solve double-digit problems?
- How can place value understanding support the strategies and models used to solve addition and subtraction problems? | Unit 3 Screeners (M1S1)
Checkpoints:
- Addition & Subtraction (M2S5)
Unit 3 Assessment (M3S7)
- Administered through Schoology
Performance Matters
Work Sample:
- Presents & Parcels
Story Problems (M3S6, M3S7) | December 3, 2022 |

* indicates standards that are assessed through the Unit Post-Assessment.

Baltimore County Public Schools
Office of Mathematics PreK-12
July 2022
Mathematics Grade 2
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 4: Measurement</td>
<td>2.OA.1*</td>
<td>• Objects/lengths can be measured using various measurement units.</td>
<td>• Why are measurements different depending on the unit?</td>
<td>Unit 4 Screeners (M1S1)</td>
<td>January 26, 2023</td>
</tr>
<tr>
<td></td>
<td>2.OA.2</td>
<td>• Knowledge of place value is used to compare the lengths of objects.</td>
<td>• How can estimating lengths be used in everyday life?</td>
<td>Checkpoints:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.OA.3</td>
<td>• Using different sized non-standard units will result in different measurements.</td>
<td>• What does it mean to measure the length of objects?</td>
<td>• Inches, Feet & Yards (M2S5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.OA.4</td>
<td>• Standard units of measurement are necessary in order to have benchmarks that are recognized universally.</td>
<td>• How can you use place value to compare the lengths of objects?</td>
<td>Unit 4 Assessment (M3S6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.NBT.2</td>
<td>• Estimation strategies can be used to reason about the length of objects.</td>
<td>• What addition and strategies can we use to make solving problems involving length easier?</td>
<td>• Administered through Schoology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.NBT.3</td>
<td>• The smaller the unit of measurement used, the greater the number of units needed to determine an object’s length.</td>
<td></td>
<td>Performance Matters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.NBT.4</td>
<td>• The greater the unit of measurement used, the fewer the number of units needed to determine an object’s length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.NBT.5</td>
<td>• Addition and subtraction strategies can be used to solve problems involving length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.NBT.6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.2*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.3*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.4*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.MD.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.
Mathematics Grade 2
Year-at-a-Glance

<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| **Unit 5: Place Value to One Thousand** | 2.OA.1, 2.OA.2, 2.OA.3, 2.NBT.1*, 2.NBT.2*, 2.NBT.3*, 2.NBT.4*, 2.NBT.5*, 2.NBT.7*, 2.NBT.8*, 2.NBT.9*, 2.MD.4, 2.MD.5, 2.MD.6, 2.MD.7, 2.MD.8*, 2.MD.10 | • Organizing objects into groups of 5 and 10, "unitizing," is essential to the development of place value understanding.
• A variety of concrete manipulatives can be used to represent the bundling of objects into groups of 5, 10, and 100 to develop place value understanding.
• Place value is based on groups of ten, in a ten-to-one-relationship.
• Our number system is a system of patterns.
• Sets of 10 (and, subsequently, sets of 100) can be thought of as single entities.
• Place value notation is dependent on the idea that the position of any individual digit determines the size of the group that the digit is counting.
• Multi-digit numbers are formed by following the same counting pattern present in single-digit counting.
• In the base ten number system, numbers to the left of the digit are ten times larger and numbers to the right are ten times less.
• Numbers can be decomposed into their component parts based on place value.
• Money concepts are developed through the understanding of groups of 1s, 5s, and 10s and are related to place value. | • What patterns can be seen when counting?
• How does understanding sets of 10 as a single entity help to describe base ten numbers? (43 has 4 sets of 10 and 3 singles).
• What tools/models can be used to represent place value concepts?
• How can the values of the digits in a number be represented?
• How can three-digit numbers be expressed in different ways using place value?
• How does the placement of a digit in a number relate to the digit’s value?
• What are the benefits of representing a number in multiple ways?
• What place value strategies can be used to solve problems that involve money concepts? | Unit 5 Screeners (M1S1)
Checkpoints:
• Three-Digit Numbers (M1S5)
• Money (M2S6)
Unit 5 Assessment (M3S7)
• Administered through Schoology Performance Matters | March 2, 2023 |

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6: Geometry</td>
<td>2.OA.1</td>
<td>- Models (pattern blocks, geoboards, colored tiles, and paper squares) can be used to investigate properties of shapes. - Composite shapes are formed by combining shapes. - The area of a shape can be found by counting units. - Measuring the area of a shape using different sized (but related) units directly relates to the concept of proportionality. - Shapes can be described and compared using their geometric attributes. - Rectangles can be partitioned into equal shares.</td>
<td>- How can models help you investigate properties of shapes? - How can shapes be used to make other shapes? - How can you find the area of a given shape using units? - Why does measuring an area with different sized units result in different measurements? - How can shapes be described and compared using their geometric attributes? - How can you show equal shares by portioning a rectangle?</td>
<td>Unit 6 Screeners (M1S1) Unit 6 Assessment (M3S6) • Administered through Schoology Performance Matters</td>
<td>March 31, 2023</td>
</tr>
</tbody>
</table>

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 7: Measurement, Fractions & Multi-Digit Computation with Hungry Ants | 2.OA.1* 2.OA.2 2.NBT.1 2.NBT.2 2.NBT.3 2.NBT.4 2.NBT.5 2.NBT.6 2.NBT.7* 2.NBT.8 2.NBT.9* 2.MD.1* 2.MD.2 2.MD.3* 2.MD.4* 2.MD.6 2.MD.8* 2.MD.10 2.G.3* | • Modeling division situations in which sets are separated into equal parts directly relates to representing and solving addition and subtraction problems.
• Selecting an appropriate unit of measurement for a given attribute is an efficient measuring strategy.
• Objects/lengths can be measured using various measurement units.
• Standard units of measurement (centimeters, inches, meters, and feet) are necessary in order to have benchmarks that are recognized universally.
• Using length units of different lengths for two measurements results in two different measurements related to the size of the unit chosen.
• Partitioning circles and rectangles into equal parts lays the foundation for the development of fractions.
• A variety of models can represent how to solve 3-digit addition and subtraction problems using hundreds, tens, and ones.
• Base ten area pieces (hundreds, tens and ones) can be used to show regrouping.
• Understanding numbers, their representations, properties, and relationships assist in solving addition and subtraction problems within 1,000. | • How can using division situations help to solve addition and subtraction problems?
• Why is selecting an appropriate unit of measurement an efficient measuring strategy?
• Why are measurements different depending on the unit?
• Why is it necessary to have standard units of measurement?
• How can fractions be modeled?
• What strategies can we use to make adding and subtracting 3-digit numbers easier?
• How can you show regrouping when adding and subtracting numbers?
• How do we understand place value and use properties of operations to add and subtract? | Unit 7 Screeners (M1S1) Checkpoints:
• Metric Measuring & Fractions (M2S5)
Unit 7 Assessment (M3S5)
• Administered through Schoology Performance Matters
Work Sample:
• The Ants’ Toy Store Story Problems (M4S5, M4S6) | May 12, 2023 |

* indicates standards that are assessed through the Unit Post-Assessment.
<table>
<thead>
<tr>
<th>Unit Number and Title</th>
<th>Standards</th>
<th>Big Ideas</th>
<th>Essential Questions</th>
<th>Assessment</th>
<th>Suggested Unit Completion Date</th>
</tr>
</thead>
</table>
| Unit 8: Measurement, Data & Multi-Digit Computation with Marble Rolls | 2.OA.1 2.OA.3 2.NBT.1 2.NBT.2 2.NBT.3* 2.NBT.4* 2.NBT.5 2.NBT.6 2.NBT.7* 2.NBT.8 2.NBT.9 2.MD.1 2.MD.2 2.MD.3 2.MD.4 2.MD.5 2.MD.6 2.MD.7 2.MD.8 2.MD.9* 2.MD.10 2.G.3 | • Numbers are built with component parts based on place value.
• Numbers can be decomposed into their component parts based on place value.
• Groups of hundreds, tens, and ones can be used as intervals of measurement.
• A variety of models can represent how to solve double-digit addition problems using tens and ones.
• Our number system is base ten.
• Base ten concepts are used to count, total, and compare the lengths of objects.
• Mathematical models can be used as representational and computational tools. | • How can three-digit numbers be expressed in different ways using place value?
• What does it mean to measure the length of objects?
• How can you measure the length of objects?
• What models can be used to solve double-digit problems?
• What strategies can we use to make solving addition problems easier?
• What is a base ten number system?
• How are measurement concepts connected to the base ten system? | Unit 8 Screeners (M1S2)
Unit 8 Assessment (M3S5)
• Administered through Schoology Performance Matters | June 13, 2023 |